Abstract

This paper presents methods for the estimation of the time-varying directions of arrival (DOAs) of signals emitted by moving sources. Following the sparse Bayesian learning (SBL) framework, prior information of unknown source amplitudes is modeled as a multi-variate Gaussian distribution with zero-mean and time-varying variance parameters. For sequential estimation of the unknown variance, we present two sequential SBL-based methods that propagate statistical information across time to improve DOA estimation performance. The first method heuristically calculates the parameters of an inverse-gamma hyperprior based on the source signal estimate from the previous time step. In addition, a second sequential SBL method is proposed, which performs a prediction step to calculate the prior distribution of the current variance parameter from the variance parameter estimated at the previous time step. The SBL-based sequential processing provides high-resolution DOA tracking capabilities. Performance improvements are demonstrated by using simulated data as well as real data from the SWellEx-96 experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.