Abstract

Soluble and total extractable concentrations used for predicting contaminants' environmental fate may lead to uncertainties due to the lack of understanding of soil-contaminants interactions. The present study focuses on the influence of a controlled electric field on the distribution of polycyclic aromatic hydrocarbons in soil samples evaluated through a speciation scheme. Soil samples were spiked with 25,000 mg (hexadecane, phenanthrene, and pyrene 100:1:1 w/w) per kg of soil, and speciation of hydrocarbons was determined by employing a novel Sequential Solvent Extraction procedure, resulting in five fractions: soluble, pseudosoluble, desorbable, extractable, and sequestered. The distribution of hydrocarbons was then changed through the application of an electric field (72 h, 0.708 mA cm−2, 2.95 ± 0.13 V cm−1), which modified the interactions in the soil-water interface. The electrochemical treatment significantly increased the pyrene soluble, desorbable and sequestered fractions by 340, 1.3 and 19-fold (p < 0.05); the hexadecane soluble fraction increased in 6-fold (p < 0.05) and the phenanthrene desorbable fraction increased in 1.3-fold (p < 0.05). The use of the speciation scheme proposed in this study provides a wider view of hydrocarbons distribution in soils, rather than using water-soluble or total extractable concentrations. Finally, this speciation scheme is proposed as a tool to evaluate the environmental fate of organic contaminants in soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call