Abstract

Driving video is available from in-car camera for road detection and collision avoidance. However, consecutive video frames in a large volume have redundant scene coverage during vehicle motion, which hampers real-time perception in autonomous driving. This work utilizes compact road profiles (RP) and motion profiles (MP) to identify path regions and dynamic objects, which drastically reduces video data to a lower dimension and increases sensing rate. To avoid collision in a close range and navigate a vehicle in middle and far ranges, several RP/MPs are scanned continuously from different depths for vehicle path planning. We train deep network to implement semantic segmentation of RP in the spatial-temporal domain, in which we further propose a temporally shifting memory for online testing. It sequentially segments every incoming line without latency by referring to a temporal window. In streaming-mode, our method generates real-time output of road, roadsides, vehicles, pedestrians, etc. at discrete depths for path planning and speed control. We have experimented our method on naturalistic driving videos under various weather and illumination conditions. It reached the highest efficiency with the least amount of data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.