Abstract
We observe a sequence X1, X2,…, Xn of independent and identically distributed coordinatewise nonnegative d-dimensional random vectors. When a vector is observed it can either be selected or rejected but once made this decision is final. In each coordinate the sum of the selected vectors must not exceed a given constant. The problem is to find a selection policy that maximizes the expected number of selected vectors. For a general absolutely continuous distribution of the Xi we determine the maximal expected number of selected vectors asymptotically and give a selection policy which asymptotically achieves optimality. This problem raises a question closely related to the following problem. Given an absolutely continuous measure μ on Q = [0,1]d and a τ ∈ Q, find a set A of maximal measure μ(A) among all A ⊂ Q whose center of gravity lies below τ in all coordinates. We will show that a simplicial section {x ∈ Q | 〈x, θ〉 ≤ 1}, where θ ∈ ℝd, θ ≥ 0, satisfies a certain additional property, is a solution to this problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.