Abstract

Dynamic graciloplasty is used as a treatment modality for total urinary incontinence caused by a paralyzed sphincter. A problem with this application is undesirable fatigue of the muscle caused by continuous electrical stimulation. Therefore, the neosphincter must be trained via a rigorous regimen to transform it from a fatigue-prone state to a fatigue-resistant state. To avoid or shorten this training period, the application of sequential segmental neuromuscular stimulation (SSNS) was examined. This form of stimulation proved previously to be highly effective in acutely reducing fatigue caused by electrical stimulation. The contractile function and perfusion of gracilis muscles employed as neosphincters were compared between conventional, single-channel, continuous stimulation, and multichannel sequential stimulation in 8 dogs. The sequentially stimulated neosphincter proved to have an endurance 2.9 times longer (as measured by halftime to fatigue) than continuous stimulation and a better blood perfusion during stimulation (both of which were significant changes, p < 0.05). Clinically, this will not antiquate training of the muscle, but SSNS could reduce the need for long and rigorous training protocols, making dynamic graciloplasty more attractive as a method of treating urinary or fecal incontinence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call