Abstract

We present a new and easy-to-implement sequential sampling method for CGMY processes with either finite or infinite variation, exploiting the time change representation of the CGMY model and a decomposition of its time change. We find that the time change can be decomposed into two independent components. While the first component is a \emph{finite} \emph{generalized gamma convolution} process whose increments can be sampled by either the exact double CFTP (``coupling from the past'') method or an approximation scheme with high speed and accuracy, the second component can easily be made arbitrarily small in the $L^1$ sense. Simulation results show that the proposed method is advantageous over two existing methods under a model calibrated to historical option price data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.