Abstract

One-door container type of vehicle is the main tool for urban logistics in Indonesia which may take the form of truck, car, or motorcycle container. The operations would be more effective when it is performed through pickup-delivery or forward-reverse at a time. However, there is difficulty to optimize the operation of routing and container loading processes in such a system. This article is proposing an improvement for algorithm for sequential routing- loading process which had been tested in the small datasets but not yet tested in the case of big data set and vehicle routing problem with time windows. The improvement algorithm is tested in big data set with the input of the vehicle routing problem with time windows (VRP-TW) using the solution optimization of the Simulated Annealing process with restart point procedure (SA-R) for the routing optimization and Genetic Algorithm (GA) to optimize the container loading algorithm. The large data sets are hypothetical generated data for 800-2500 single-sized products, 4 types of container capacity, and 100-400 consumer spots. As result, the performance of the proposed algorithm in terms of cost is influenced by the number of spots to be visited by the vehicle and the vehicle capacity. Limitations and further analysis are also described in this article.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.