Abstract

Sequential Robust Design experiments and X-ray photoelectron spectroscopic (XPS) studies were performed to examine the immobilization of hyaluronic acid (HA) on glass substrates chemisorbed with N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (EDS). Numerous reaction conditions were investigated, including the concentrations of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), N-hydroxysulfosuccinimide (Sulfo-NHS), and HA, and the reaction buffer type, concentration, and pH. The elemental surface compositions of carbon and silicon (C/Si ratio) were used to assess the extent of HA immobilization, leading to the identification of critical HA-binding reaction conditions and the determination of an optimum surface chemistry. The optimum chemistry consisted of 200 mM EDC, 50 mM Sulfo-NHS, 10 mM N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) (HEPES) buffer at a pH of 7.0, and 3 mg/mL HA. This work emphasizes the advantages of using Robust Design methods over traditional statistical experimental design, particularly when large numbers of variables are examined and costly analytical techniques are employed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call