Abstract

Bone regeneration is a complex process sequentially regulated by multiple cytokines at different stages. Vascular endothelial growth factor-A (VEGF-A) and bone morphogenetic protein-2 (BMP-2) are the two most important factors involved in this process, and the combination of the two can achieve better bone regeneration by coupling angiogenesis and osteogenesis. In this study, poly(lactic-co-glycolic acid) (PLGA) microspheres with core-shell structure (microcapsules) encapsulating VEGF-A or BMP-2 were prepared by coaxial channel injection and continuous fluid technology. The sequential release of two cytokines by microcapsules with different PLGA molecular weight and shell thickness and its performance in vitro were explored. It was demonstrated that the molecular weight of PLGA significantly affected the degradation and release kinetics of microcapsules, while the thickness of the shell can regulate the release in a finer level. VEGF-A encapsulated microcapsules with low molecular weight can induce vascular endothelial cells to form lumens structures in vitro at an early stage. And BMP-2 encapsulated microcapsules could promote osteogenic differentiation, but the effect could be delayed when the microcapsules were prepared with PLGA of 150 kDa. In conclusion, the core-shell PLGA microcapsules in this study can sequentially release VEGF-A and BMP-2 at different stages to simulate natural bone repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call