Abstract

For indistinguishable targets, the probability density function is symmetric under exchange of the target labels and can be formulated as the square of a symmetric or antisymmetric real-valued wave function. [1] Anti-symmetry implicitly describes objects that cannot share the same physical state at the same time-a property macroscopic real world objects possess. Based on the approach in [1], we develop a sequential Monte Carlo method that propagates and updates the anti-symmetric wave function. Anti-symmetry is maintained using an approximation in the time update step. The algorithm is closely related to Quantum Monte Carlo methods applied in nuclear and condensed matter physics. Preliminary results for a simple two-target scenarios are presented and limitations and possible further developments are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.