Abstract

In this paper, we present a sequential projection-based metacognitive learning algorithm in a radial basis function network (PBL-McRBFN) for classification problems. The algorithm is inspired by human metacognitive learning principles and has two components: a cognitive component and a metacognitive component. The cognitive component is a single-hidden-layer radial basis function network with evolving architecture. The metacognitive component controls the learning process in the cognitive component by choosing the best learning strategy for the current sample and adapts the learning strategies by implementing self-regulation. In addition, sample overlapping conditions and past knowledge of the samples in the form of pseudosamples are used for proper initialization of new hidden neurons to minimize the misclassification. The parameter update strategy uses projection-based direct minimization of hinge loss error. The interaction of the cognitive component and the metacognitive component addresses the what-to-learn, when-to-learn, and how-to-learn human learning principles efficiently. The performance of the PBL-McRBFN is evaluated using a set of benchmark classification problems from the University of California Irvine machine learning repository. The statistical performance evaluation on these problems proves the superior performance of the PBL-McRBFN classifier over results reported in the literature. Also, we evaluate the performance of the proposed algorithm on a practical Alzheimer's disease detection problem. The performance results on open access series of imaging studies and Alzheimer's disease neuroimaging initiative datasets, which are obtained from different demographic regions, clearly show that PBL-McRBFN can handle a problem with change in distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.