Abstract
We study the revenue performance of sequential posted-price mechanisms and some natural extensions for a setting where the valuations of the buyers are drawn from a correlated distribution. Sequential posted-price mechanisms are conceptually simple mechanisms that work by proposing a “take-it-or-leave-it” offer to each buyer. We apply sequential posted-price mechanisms to single-parameter multiunit settings in which each buyer demands only one item and the mechanism can assign the service to at most k of the buyers. For standard sequential posted-price mechanisms, we prove that with the valuation distribution having finite support, no sequential posted-price mechanism can extract a constant fraction of the optimal expected revenue, even with unlimited supply. We extend this result to the case of a continuous valuation distribution when various standard assumptions hold simultaneously (i.e., everywhere-supported, continuous, symmetric, and normalized (conditional) distributions that satisfy regularity , the MHR condition , and affiliation ). In fact, it turns out that the best fraction of the optimal revenue that is extractable by a sequential posted-price mechanism is proportional to the ratio of the highest and lowest possible valuation. We prove that a simple generalization of these mechanisms achieves a better revenue performance; namely, if the sequential posted-price mechanism has for each buyer the option of either proposing an offer or asking the buyer for its valuation, then a Ω (1/max { 1, d }) fraction of the optimal revenue can be extracted, where d denotes the degree of dependence of the valuations, ranging from complete independence ( d =0) to arbitrary dependence ( d = n -1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.