Abstract

We show that if an appropriate stopping rule is used to determine the sample size when estimating the parameters in a stationary and ergodic threshold AR(1) model, then the sequential least-squares estimator is asymptotically risk efficient. The stopping rule is also shown to be asymptotically efficient. Furthermore, non-linear renewal theory is used to obtain the limit distribution of appropriately normalized stopping rule and a second-order expansion for the expected sample size. A central result here is the rate of decay of lower-tail probability of average of stationary, geometrically β-mixing sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.