Abstract

The goal of this paper is to study algorithms for solving optimization problems subject to bilinear matrix inequalities (BMIs). This class of problems is known to be of great importance in engineering applications, for instance, control system designs. A main contribution is the development of a sequential convex optimization algorithm, where at each iteration step, a convex subproblem with linear matrix inequality (LMI) constraints is solved. The set of feasible points of the LMIs is a convex inner approximation of the set of feasible points of the BMI constraints around the current iteration point. Another contribution is the convergence proof of a subsequence of the iterations to a stationary point. Finally, an example of the static output-feedback controller design problem is given for comparative analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.