Abstract
A new system, that of matrix grammars, for two-dimensional picture processing, is introduced. A hierarchy, induced on Chomsky's is found. Language operations such as union, catenation (row and column), Kleene's closure (row and column), and homomorphisms are investigated. It is found that the smallest class of these languages may serve as the class of arrays, which is defined as the smallest class of arrays closed under union, catenation (row and column) and Kleene's closure (row and column). Eight possible ways of defining a matrix language are discussed and it is suggested that one of them may lead to a normal form of matrix grammars. The method is advantageous over others on several points. Perhaps the most interesting of all is that it provides a compromise between purely sequential methods, which take too much time for large arrays and purely parallel methods, which usually take too much hardware for large arrays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.