Abstract

High quality epitaxial graphene films can be applied as templates for tailoring graphene–substrate interfaces that allow for precise control of the charge carrier behavior in graphene through doping and many-body effects. By combining scanning tunneling microscopy, angle-resolved photoemission spectroscopy and density functional theory we demonstrate that oxygen intercalated epitaxial graphene on Ir(111) has high structural quality, is quasi free-standing, and shows signatures of many-body interactions. Using this system as a template, we show that pn-interfaces can be patterned by adsorption and intercalation of rubidium, and that the n-doped graphene regions exhibit a reduced Coulomb screening via enhanced electron–plasmon coupling. These findings are central for understanding and tailoring the properties of graphene-metal contacts e.g. for realizing quantum tunneling devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.