Abstract

Animal organs are typically formed during embryogenesis by following one specific developmental programme. Here, we report that neuromast organs are generated by two distinct and sequential programmes that result in parallel sensory lines in medaka embryos. A ventral posterior lateral line (pLL) is composed of neuromasts deposited by collectively migrating cells whereas a midline pLL is formed by individually migrating cells. Despite the variable number of neuromasts among embryos, the sequential programmes that we describe here fix an invariable ratio between ventral and midline neuromasts. Mechanistically, we show that the formation of both types of neuromasts depends on the chemokine receptor genes cxcr4b and cxcr7b, illustrating how common molecules can mediate different morphogenetic processes. Altogether, we reveal a self-organising feature of the lateral line system that ensures a proper distribution of sensory organs along the body axis.

Highlights

  • The diversity of body forms across the animal kingdom is astonishing

  • When quantifying the neuromasts in each pLL, we noticed that ventral and midline neuromasts are arranged in staggered rows, where each neuromast in the midline pLL is surrounded by an anterior and a posterior neuromast in the ventral pLL (99.2%; n=141 neuromasts, n=22 pLLs) (Fig. 1B,C)

  • We dynamically followed the posterior lateral line formation in an uncharacterised species to reveal a counter-intuitive morphogenetic event, in which a ventral pLL is generated along the myoseptum and migrates ventrally, whereas the midline pLL is generated at ventral positions and migrates dorsally

Read more

Summary

Introduction

The diversity of body forms across the animal kingdom is astonishing. Even within taxa, species show major differences in body size and relative shape. Teleost fish are arguably the most extreme example of such diversity among vertebrates, considering the range from a seahorse to an eel, a pufferfish, a tuna and a zebrafish. When reviewing all these diverse forms, we wondered how peripheral sensory systems could adapt to such dissimilar body shapes. We tackle this question by focusing on the embryonic formation of the posterior lateral line ( pLL) system in medaka (Oryzias latipes). Most of our knowledge on lateral line development comes from

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.