Abstract

We analyze boundedly rational updating from aggregate statistics in a model with binary actions and binary states. Agents each take an irreversible action in sequence after observing the unordered set of previous actions. Each agent first forms her prior based on the aggregate statistic, then incorporates her signal with the prior based on Bayes rule, and finally applies a decision rule that assigns a (mixed) action to each belief. If priors are formed according to a discretized DeGroot rule, then actions converge to the state (in probability), i.e., \emph{asymptotic learning}, in any informative information structure if and only if the decision rule satisfies probability matching. This result generalizes to unspecified information settings where information structures differ across agents and agents know only the information structure generating their own signal. Also, the main result extends to the case of $n$ states and $n$ actions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call