Abstract
The adsorption dynamics and mechanism of nitrogen molecules in 1-7 nm carbon nanotubes (CNTs) at 77 K were investigated by experiments and molecular dynamics simulations. The adsorbed nitrogen amount rapidly increased in 7 nm CNTs, while it gradually increased in 1 and 3 nm CNTs. The gradual increase in 3 nm CNTs was unexpected because of the presence of sufficient adsorption sites and the weak adsorption potential of nitrogen. The molecular dynamics simulations indicated that molecules were condensed in the entrance of nanopores after monolayer adsorption in 3 nm CNTs and monolayer and bilayer adsorption in 5 nm CNTs, called nanopore entrance filling. The proposed adsorption mechanism of nitrogen molecules in CNT nanopores is as follows: first, layer-by-layer adsorption occurs on monolayer sites, followed by preferential adsorption at the nanopore entrance. Consequently, preadsorbed molecules form a fluidic pore neck similar to an ink-bottle pore. Then, newly adsorbed molecules are condensed on the fluidic pore neck, and condensed molecules in the nanopore entrance finally move into the inner part of the nanopore. The proposed sequential adsorption mechanism via nanopore entrance filling without pore blocking starkly differs from micropore filling in micropores and layer-by-layer adsorption associated with capillary condensation in mesopores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.