Abstract
In current radiology practice, multi-parametric magnetic resonance imaging (mpMRI) has recently become a key tool in diagnostic and therapeutic decisions. Although it is based on the subjective assessment of T2-weighted images, as well as perfusion-weighted and diffusion-weighted sequences, further quantitative parameters can also be derived from them for improving lesion phenotyping. Despite these parameters are usually exploited in a univariate way, ignoring the benefits of a real multivariate approach, still it is the gold standard imaging technique to assess prostate cancer location and probability of malignancy. In this paper, pharmacokinetic (perfusion) and exponential (diffusion) clinical models, as well as latent variable-based multivariate statistical models like multivariate curve resolution-alternating least squares (MCR-ALS), have been calculated and analyzed with sequential multi block-partial least squares discriminant analysis (SMB-PLS-DA) including technique-block differentiation, in order to better assess for cancer aggressiveness based on Gleason scales. The best prediction result was achieved by the ordered combination of diffusion blocks (MCR-ALS and exponential models) and normalized T2 values. The perfusion blocks did not improve the results obtained by diffusion and T2-weighted based parameters alone, so they can be removed from the SMB-PLS-DA model.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.