Abstract

We propose sequential Monte Carlo (SMC) methods for sampling the posterior distribution of state-space models under highly informative observation regimes, a situation in which standard SMC methods can perform poorly. A special case is simulating bridges between given initial and final values. The basic idea is to introduce a schedule of intermediate weighting and resampling times between observation times, which guide particles towards the final state. This can always be done for continuous-time models, and may be done for discrete-time models under sparse observation regimes; our main focus is on continuous-time diffusion processes. The methods are broadly applicable in that they support multivariate models with partial observation, do not require simulation of the backward transition (which is often unavailable), and, where possible, avoid pointwise evaluation of the forward transition. When simulating bridges, the last characteristic cannot be avoided entirely without concessions, and we suggest an $\...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.