Abstract

In this paper, we propose a general methodology to sample sequentially from a sequence of probability distributions known up to a normalizing constant and defined on a common space. These probability distributions are approximated by a cloud of weighted random samples which are propagated over time using Sequential Monte Carlo methods. This methodology allows us not only to derive simple algorithms to make parallel Markov chain Monte Carlo runs interact in a principled way, but also to obtain new methods for global optimization and sequential Bayesian estimation. We demonstrate the performance of these algorithms through simulation for various integration and global optimization tasks arising in the context of Bayesian inference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.