Abstract

This paper develops a novel sequential Monte Carlo (SMC) approach for joint state and parameter estimation that can deal efficiently with abruptly changing parameters which is a common case when tracking maneuvering targets. The approach combines Bayesian methods for dealing with change-points with methods for estimating static parameters within the SMC framework. The result is an approach that adaptively estimates the model parameters in accordance with changes to the target's trajectory. The developed approach is compared against the Interacting Multiple Model (IMM) filter for tracking a maneuvering target over a complex maneuvering scenario with nonlinear observations. In the IMM filter a large combination of models is required to account for unknown parameters. In contrast, the proposed approach circumvents the combinatorial complexity of applying multiple models in the IMM filter through Bayesian parameter estimation techniques. The developed approach is validated over complex maneuvering scenarios where both the system parameters and measurement noise parameters are unknown. Accurate estimation results are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.