Abstract
Activity recognition is an important task in cyber physical system research and has been the focus of researchers worldwide. This paper presents a method for activity recognition in logistic operations using data from accelerometer and gyroscope sensors. A Long Short Term Memory (LSTM) recurrent neural network, bidirectional LSTM and a Convolutional LSTM (ConvLSTM) are used to classify between six activities being performed in the logistics operations being carried out. Comparing the performance of the LSTMs to the Conv-LSTM network, the designed Bi-LSTM RNN outperforms the other networks considered
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.