Abstract

Noise covariance estimation in an adaptive Kalman filter is a problem of significant practical interest in a wide array of industrial applications. Reliable algorithms for their estimation are scarce, and the necessary and sufficient conditions for identifiability of the covariances were in dispute until very recently. This chapter presents the necessary and sufficient conditions for the identifiability of noise covariances, and then develops sequential mini-batch stochastic optimization algorithms for estimating them. The optimization criterion involves the minimization of the sum of the normalized temporal cross-correlations of the innovations; this is based on the property that the innovations of an optimal Kalman filter are uncorrelated over time. Our approach enforces the structural constraints on noise covariances and ensures the symmetry and positive definiteness of the estimated covariance matrices. Our approach is applicable to non-stationary and multiple model systems, where the noise covariances can occasionally jump up or down by an unknown level. The validation of the proposed method on several test cases demonstrates its computational efficiency and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.