Abstract

Sequential meiotic prophase development has been followed in the pubertal male pygmy mouse Mus terricolor, with the objective to identify early meiotic prophase stages. The pygmy mouse differs from the common mouse by having large heterochromatic blocks in the X and Y chromosomes. These mice also show various chromosomal mutations; for example, fixed variations of autosomal short arms heterochromatin among different chromosomal species and pericentric inversion polymorphism. Identification of prophase stages was crucial to analyzing effects of heterozygosity for these chromosomal changes on the process of homologous synapsis. Here we describe identification of the prophase stages in M. terricolor, especially the pachytene substages, on the basis of morphology of the XY bivalent. Based on this substaging, we show delayed pairing of the heterochromatic short arms, which may be the reason for their lack of chiasmata. The identification of precise pachytene substages also reveals an early occurrence of "synaptic adjustment" in the pericentric inversion heterobivalents, a mechanism that would prevent chiasma formation in the inverted segment and thereby would abate adverse effects of such heterozygosity. The identification of pachytene substages would serve as the basis to analyze the nature of synaptic anomalies met in M. terricolor hybrids (which will be the basis of a subsequent paper).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.