Abstract

This paper studies the dynamics of cryptocurrency volatility using a stochastic volatility model with simultaneous and correlated jumps in returns and volatility. We estimate the model using an efficient sequential learning algorithm that allows for learning about multiple unknown model parameters simultaneously, with daily data on four popular cryptocurrencies. We find that these cryptocurrencies have quite different volatility dynamics. In particular, they exhibit different return-volatility relationships: While Ethereum and Litecoin show a negative relationship, Chainlink displays a positive one and interestingly, Bitcoin’s one changes from negative to positive in June 2016. We also provide evidence that the sequential learning algorithm helps better detect large jumps in the cryptocurrency market in real time. Overall, incorporating volatility jumps helps better capture the dynamic behavior of highly volatile cryptocurrencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call