Abstract
The Bengalese finch (Lonchura striata var. domestica) is a species of songbird. Males sing courtship songs with complex note-to-note transition rules, while females discriminate these songs when choosing their mate. The present study uses serial reaction time (RT) to examine the characteristics of the Bengalese finches’ sequential behaviours beyond song production. The birds were trained to produce the sequence with an “A–B–A” structure. After the RT to each key position was determined to be stable, we tested the acquisition of the trained sequential response by presenting novel and random three-term sequences (random test). We also examined whether they could abstract the embedded rule in the trained sequence and apply it to the novel test sequence (abstract test). Additionally, we examined rule abstraction through example training by increasing the number of examples in baseline training from 1 to 5. When considered as (gender) groups, training with 5 examples resulted in no statistically significant differences in the abstract tests, while statistically significant differences were observed in the random tests, suggesting that the male birds learned the trained sequences and transferred the abstract structure they had learned during the training trials. Individual data indicated that males, as opposed to females, were likely to learn the motor pattern of the sequence. The results are consistent with observations that males learn to produce songs with complex sequential rules, whereas females do not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.