Abstract
Visual features are commonly modeled with probability density functions in computer vision problems, but current methods such as a mixture of Gaussians and kernel density estimation suffer from either the lack of flexibility, by fixing or limiting the number of Gaussian components in the mixture, or large memory requirement, by maintaining a non-parametric representation of the density. These problems are aggravated in real-time computer vision applications since density functions are required to be updated as new data becomes available. We present a novel kernel density approximation technique based on the mean-shift mode finding algorithm, and describe an efficient method to sequentially propagate the density modes over time. While the proposed density representation is memory efficient, which is typical for mixture densities, it inherits the flexibility of non-parametric methods by allowing the number of components to be variable. The accuracy and compactness of the sequential kernel density approximation technique is illustrated by both simulations and experiments. Sequential kernel density approximation is applied to on-line target appearance modeling for visual tracking, and its performance is demonstrated on a variety of videos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.