Abstract
We provide a sequential Monte Carlo method for estimating rare-event probabilities in dynamic, intensity-based point process models of portfolio credit risk. The method is based on a change of measure and involves a resampling mechanism. We propose resampling weights that lead, under technical conditions, to a logarithmically efficient simulation estimator of the probability of large portfolio losses. A numerical analysis illustrates the features of the method, and contrasts it with other rare-event schemes recently developed for portfolio credit risk, including an interacting particle scheme and an importance sampling scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.