Abstract
Although many people have been vaccinated against COVID-19, infections with SARS-CoV-2 seem hard to avoid. There is a need to develop more effective vaccines and immunization strategies against emerging variants of infectious diseases. To understand whether different immunization strategies using variants sequence-based virus-like particles (VLPs) vaccines could offer superior immunity against future SARS-CoV-2 variants, our team constructed VLPs for the original Wuhan-Hu-1 strain (prototype), Delta (δ) variant, and Omicron (ο) variant of SARS-CoV-2, using baculovirus-insect expression system. Then we used these VLPs to assess the immune responses induced by homologous prime-boost, heterologous prime-boost, and sequential immunizations strategies in a mouse model. Our results showed that the pro+δ+ο sequential strategies elicited better neutralizing antibody responses. These sequential strategies also take advantage of inducing CD4+ T and CD8+ T lymphocytes proliferation and tendency to cytokine of Th1. Currently, our data suggest that sequential immunization with VLPs of encoding spike protein derived from SARS-CoV-2 variants of concern may be a potential vaccine strategy against emerging diseases, such as "Disease X".
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.