Abstract
Segmented regression is widely used in many disciplines, especially when dealing with environmental data. This paper deals with the problem of selecting the correct number of changepoints in segmented regression models. A review of the usual selection criteria, namely information criteria and hypothesis testing, is provided. We enhance the latter method by proposing a novel sequential hypothesis testing procedure to address this problem. Our sequential procedure’s performance is compared to methods based on information-based criteria through simulation studies. The results show that our proposal performs similarly to its competitors for the Gaussian, Binomial, and Poisson cases. Finally, we present two applications to environmental datasets of crime data in Valencia and global temperature land data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.