Abstract

The halogen bonding ability of ditopic halogen bond donors can be assessed from the maximum value of the molecular surface electrostatic potential, called σ-hole, at the two halogen atoms. We show here that in N,N′-diodo-dimethylhydantoin (DIH), the halogen bonding (XB) ability of the two nitrogen-bound iodine atoms does not parallel the calculated σ-hole amplitude. The cocrystallization of DIH with a series of para-substituted pyridines, noted Py-R (R = pyrrolidinyl, NMe2, Me, H, CO2Me, CF3, CN), affords bis-adducts DIH·(Py-R)2 with the more electron-rich pyridines, while mono-adducts DIH·(Py-R) are favored with the more electron-poor pyridines (R = CO2Me, CF3, CN). Analysis of the structural characteristics of these mono- and bis-adducts, combined with theoretical calculations, demonstrates that the formation of a first N–I···N′Py-R XB deeply modifies the XB ability (and associated σ-hole) of the second uncoordinated iodine atom. Under these conditions, the latter might associate through I···O XB to the...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.