Abstract

Monodisperse sub-10 nm core-shell nanocrystals have been extensively studied owing to their important applications in catalysis, bioimaging, nanomedicine, and so on. In this work, an amorphous shell component crystallization strategy has been proposed to prepare high quality sub-10 nm NaYF4:Yb/Er@NaGdF4 core-shell nanocrystals successfully via a sequential growth process. The dynamic light scattering technique has been used to investigate the secondary nucleation and growth process forming the core-shell nanocrystals. The size and morphology evolution of the core-shell nanocrystals reveals that the secondary nucleation of the shell component is unavoidable after hot-injecting the shell precursor at high temperatures, which was followed by dissolution and recrystallization (an Ostwald ripening process) to partially produce the core-shell nanocrystals. The present study demonstrates that the size of seed nanocrystals and the injection temperature of the shell component precursor play a vital role in the formation of core-shell nanostructures completely. This work will provide an alternative strategy for precisely controlling the fabrication of sub-10 nm core-shell nanostructures for various applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call