Abstract

In the classic Precise Point Positioning (PPP) approach, observations of Global Navigation Satellite Systems (GNSS) are processed at the network level to generate satellite clocks and positions. This information can be used to enable accurate point positioning for a single GNSS receiver. In the PPP Real-Time Kinematic (PPP-RTK) approach, satellite phase biases are considered as well, enabling ambiguity resolution at the network and user levels. In this research, 30 s multi-frequency raw GPS, Galileo, and BDS-2/3 observations are processed at the network and user levels in a sequential Kalman filter. PPP-RTK enabling products are generated for up to five frequencies, and ambiguity resolution is performed at the network and user levels using a flexible ambiguity reparameterization approach, comparable to wide- and narrow-laning, which has shown to yield a significantly improved single epoch coordinate solution when multi-frequency observations are available. Different assumptions regarding the time stability of receiver and satellite phase biases have been made and compared. The availability of a precise user coordinate solution when multi-frequency and dual-frequency observations are processed is assessed and compared. A precise ambiguity-fixed solution is available in three epochs or fewer in 77% of all cases with an average of 24 visible satellites for static and kinematic receivers when multi-frequency observations are processed. When only dual-frequency observations are considered, a fixed solution is available in seven epochs or fewer in 71% of all cases. The fastest fixed solution was found in two epochs with multi-frequency observations and in six epochs with dual-frequency observations. Estimating a reference phase clock did not lead to an improvement in the coordinate solution. The findings indicate that a fixed solution can potentially be found faster than often suggested, with potential for further improvement when more satellites or regional atmospheric corrections are considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call