Abstract
In this study, the sequential extraction of the three types of biochemicals from microalgae is employed, which is a more realistic and practical solution for large-scale extraction of bioproducts. The drying, grinding, organic solvent treatment, and ultra-sonication were combined to disrupt cells and sequentially extract bioproducts from three microalgae strains, Chlorella sorokiniana IG-W-96, Chlorella sp. PG-96, and Chlorella vulgaris IG-R-96. As the drying is the most energy-intensive step in cell disruption and sequential extraction, the effect of this step on sequential extraction deeply explored. The results show that total ash-plus contents of biochemicals in freeze-dried samples (95.4 ± 2.8%, 89.3 ± 3.9%, and 77.5 ± 4.2 respectively) are higher than those in oven-dried samples (91.0 ± 2.8%, 89.5 ± 3.0%, 71.4 ± 4.8%, respectively) showing the superiority of freeze drying over oven drying merely for Chlorella vulgaris IG-R-96 (p-value = 0.003) and non-significant variation for Chlorella sorokiniana IG-W-96 (p-value = 0.085) and Chlorella sp. PG-96 (p-value = 0.466). Variation among biochemical contents of strains is due to the difference in cell wall strength confirmed by TEM imaging. The freeze-dried samples achieved higher lipid yields than oven-dried samples. The total carbohydrate yields followed the same pattern. The extraction yields of total protein were higher in freeze-dried samples than in oven-dried. Total mass balance revealed that drying-based sequential extraction of value-added bioproducts could better demonstrate the economic potential of sustainable and renewable algal feedstock than independent assays for each biochemical.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.