Abstract

The classic chondrocyte isolation protocol is a 1-step enzymatic digestion protocol in which cartilage samples are digested in collagenase solution for a single, long period. However, this method usually results in incomplete cartilage dissociation and low chondrocyte quality. In this study, we aimed to develop a rapid, high-efficiency, and flexible chondrocyte isolation protocol for cartilage tissue engineering. Cartilage tissues harvested from rabbit ear, rib, septum, and articulation were minced and subjected to enzymatic digestion using the classic protocol or the newly developed sequential protocol. In the classic protocol, cartilage fragments were subjected to one 12-hour digestion. In the sequential protocol, cartilage fragments were sequentially subjected to 2-hour first digestion, followed by two 3-hour digestions. The collected cells were then subjected to analyses of cell-yield efficiency, viability, proliferation, phenotype, and cartilage matrix synthesis capacity. Overall, the sequential protocol exhibited higher cell-yield efficiency than the classic protocol for the 4 cartilage types. The cells harvested from the second and third digestions demonstrated higher cell viability, more proliferative activity, a better chondrocyte phenotype, and a higher cartilage-specific matrix synthesis ability than those harvested from the first digestion and after the classic 1-step protocol. The sequential protocol is a rapid, flexible, high-efficiency chondrocyte isolation protocol for different cartilage tissues. We recommend using this protocol for chondrocyte isolation, and in particular, the cells obtained after the subsequent 3-hour sequential digestions should be used for chondrocyte-based therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call