Abstract
Subspace analysis is one of popular multivariate data analysis methods, which has been widely used in pattern recognition. Typically data space belongs to very high dimension, but only a few principal components need to be extracted. In this paper, we present a fast sequential algorithm which behaves like expectation maximization (EM), for subspace analysis or tracking. In addition we also present a slight modification of the subspace algorithm by employing a rectifier, that is quite useful in handling nonnegative data (for example, images), which leads to rectified subspace analysis. The useful behavior of our proposed algorithms are confirmed through numerical experimental results with toy data and dynamic PET images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.