Abstract

Hydride transfer from dihydronicotinamide adenine dinucleotide (NADH) analogues, such as 10-methyl-9,10-dihydroacridine (AcrH 2) and its derivatives, 1-benzyl-1,4-dihydronicotinamide (BNAH), and their deuterated compounds, to non-heme oxoiron(IV) complexes such as [(L)Fe (IV)(O)] (2+) (L = N4Py, Bn-TPEN, and TMC) occurs to yield the corresponding NAD (+) analogues and non-heme iron(II) complexes in acetonitrile. Hydride transfer from the NADH analogues to p-chloranil (Cl 4Q) also occurs to produce the corresponding NAD (+) analogues and the hydroquinone anion (Cl 4QH (-)). The logarithms of the observed second-order rate constants (log k H) of hydride transfer from NADH analogues to non-heme oxoiron(IV) complexes are linearly correlated with those of hydride transfer from the same series of NADH analogues to Cl 4Q, including similar kinetic deuterium isotope effects. The log k H values of hydride transfer from NADH analogues to non-heme oxoiron(IV) complexes are also linearly correlated with those of deprotonation of the radical cations of NADH analogues. Such linear correlations indicate that overall hydride-transfer reactions of NADH analogues to both non-heme oxoiron(IV) complexes and Cl 4Q occur via electron transfer from NADH analogues to the oxoiron(IV) complexes, followed by rate-limiting deprotonation from the radical cations of NADH analogues and subsequent rapid electron transfer from the deprotonated radicals to the Fe(III) complexes to yield the corresponding NAD (+) analogues and the Fe(II) complexes. The electron-transfer pathway was accelerated by the presence of perchloric acid, and the resulting radical cations of NADH analogues were detected by electron spin resonance spectroscopy and UV-vis spectrophotometry in the acid-promoted hydride-transfer reactions from NADH analogues to non-heme oxoiron(IV) complexes. This result provides the first direct evidence that a hydride transfer from NADH analogues to non-heme oxoiron(IV) complexes proceeds via an electron-transfer pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call