Abstract

Escherichia coli O157:H7 (E. coli O157:H7) is one of the most common pathogens in fresh vegetables and fruits, and most of the diseases produced by E. coli O157:H7 are associated with biofilms. Cold nitrogen plasma (CNP) is a cold sterilization technique which has no residue. However to completely eliminate the biofilm on the surface of vegetables the processing power and time of CNP have to be enhanced, which will impact on the quality of fruits and vegetables. Thus the sequential treatment of CNP and phage techniques was engineered in this study. Compared to treatment performed separately, sequential treatment not only had more mild treatment conditions as 400W CNP treatment for 2min and 5% phage treatment for 30min, but also exhibited more remarkable effect on eradicating E. coli O157:H7 biofilms in vitro and on vegetables. The population of E. coli O157:H7 was approximately reduced by 2logCFU/cm2 after individual treatment of 5% phages for 30min or 500W CNP for 3min. While the sequential treatment of CNP (400W, 2min) and phages (5%, 30min) reduced the E. coli O157:H7 viable count in biofilm by 5.71logCFU/cm2. Therefore, the sequential treatment holds a great promise to improve the current treatment systems of bacterial contamination on different vegetable surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.