Abstract

Capitalizing on the directed nature of the atomic fluxes in molecular beam epitaxy, we propose and demonstrate the sequential directional deposition of lateral (In,Ga)N shells on GaN nanowires. In this approach, a sub-monolayer thickness of each constituent atomic species, i.e., Ga, In, and N, is deposited subsequently from the same direction by rotating the sample and operating the shutters accordingly. Using multiple iterations of this process, we achieve the growth of homogeneous shells on a single side facet of the nanowires. For higher In content and thus lattice mismatch, we observe a strain-induced bending of the nanowire heterostructures. The incorporation of In and the resulting emission spectra are systematically investigated as a function of both the growth temperature and the In/Ga flux ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call