Abstract

The Upper Cheliff plain lies 125 km south-west of Algiers, capital city of Algeria. It is characterized by its unconfined aquifer contained in a heterogeneous filling of Mio-Plio-Quaternary age. Nowadays, this aquifer is severely exploited to meet the domestic, industrial and agricultural needs in the region. Groundwater resources management by means of numerical modeling is highly required in order to improve our knowledge of the hydrogeological operation of this aquifer. In this work we implemented an approach based on a sequential solving of the direct and inverse problems. In the case of the direct problem, steadystate flow simulations revealed the persistence of large discrepancies between the measured and calculated piezometric levels, which reflect the heterogeneity of the aquifer. The zonation provided by the direct method, based on the conceptual model, is then fed in the inverse method. The latter, in addition to its speed and its convergence, made it possible to reduce the disparities with measurements as noted in the direct method. The main results highlight a heterogeneous hydraulic conductivity distribution which reaches its highest values in the central and north-western sectors of the aquifer, whereas the lowest values are found in the eastern, northern and southern sectors of the aquifer. Furthermore, calculation of the groundwater flow budget by the inverse model showed that rainfall recharge is the main input into the aquifer with 462.5x103 m3/day, whereas the most important outlet of the aquifer is the Cheliff Wadi with a flow rate of 627x103 m3/day.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call