Abstract

ABSTRACTThe delivery of sub‐micron droplets of dilute polymer solutions to a heated substrate by electrospray atomization enabled precisely controlled and continuous deposition, or growth, of block copolymer thin films. It also provided, in principle, the ability to fabricate heterolattice materials using sequential depositions. This possibility was explored and the morphology of resulting composite films produced by such sequential electrospray deposition (ESD) of lamellar diblock copolymers of poly(styrene‐b‐4‐vinylpyridine) with differing molecular weights was examined. The structure of the heterolattice interface was a strong function of temperature. Sharp interfaces with abrupt changes in the lamellar period were observed at lower deposition temperatures, while higher temperatures produced a smooth variation in the lamellar period from one molecular weight to the next. The ordering kinetics of a secondary high molecular weight layer could be substantially enhanced depending on the molecular weight of the polymer present in the underlying primary layer. These findings were discussed in the context of temperature and molecular weight dependent diffusion dynamics of the polymers in the melt which control the inter‐mixing of the layers and therefore the structure of the heterolattice interface. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 247–253

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.