Abstract

We develop a suite of models with varying complexity to predict elk movement behavior during the winter on the Northern Range of Yellowstone National Park (YNP). The models range from a simple representation of optimal patch choice to a dynamic game, and we show how the underlying theory in each is related by the presence or absence of state- and frequency-dependence. We compare predictions from each of the models for three variables that are of basic and applied interest: elk survival, aggregation, and use of habitat outside YNP. Our results suggest that despite low overall forage depletion in the winter, frequency-dependence is crucial to the predictions for elk movement and distribution. Furthermore, frequency-dependence interacts with mass-dependence in the predicted outcome of elk decision-making. We use these results to show how models that treat single movement decisions in isolation from the seasonal sequence of decisions are insufficient to capture landscape scale behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.