Abstract
In comparative studies, covariate balance and sequential allocation schemes have attracted growing academic interest. Although many theoretically justified adaptive randomization methods achieve the covariate balance, they often allocate patients in pairs or groups. To better meet the practical requirements where the clinicians cannot wait for other participants to assign the current patient for some economic or ethical reasons, we propose a method that randomizes patients individually and sequentially. The proposed method conceptually separates the covariate imbalance, measured by the newly proposed modified Mahalanobis distance, and the marginal imbalance, that is the sample size difference between the 2 groups, and it minimizes them with an explicit priority order. Compared with the existing sequential randomization methods, the proposed method achieves the best possible covariate balance while maintaining the marginal balance directly, offering us more control of the randomization process. We demonstrate the superior performance of the proposed method through a wide range of simulation studies and real data analysis, and also establish theoretical guarantees for the proposed method in terms of both the convergence of the imbalance measure and the subsequent treatment effect estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.