Abstract
We define sequential completeness for ⊤-quasi-uniform spaces using Cauchy pair ⊤-sequences. We show that completeness implies sequential completeness and that for ⊤-uniform spaces with countable ⊤-uniform bases, completeness and sequential completeness are equivalent. As an illustration of the applicability of the concept, we give a fixed point theorem for certain contractive self-mappings in a ⊤-uniform space. This result yields, as a special case, a fixed point theorem for probabilistic metric spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.