Abstract

Effective hashing for large-scale image databases is a popular research area, attracting much attention in computer vision and visual information retrieval. Several recent methods attempt to learn either graph embedding or semantic coding for fast and accurate applications. In this paper, a novel unsupervised framework, termed evolutionary compact embedding (ECE), is introduced to automatically learn the task-specific binary hash codes. It can be regarded as an optimization algorithm that combines the genetic programming (GP) and a boosting trick. In our architecture, each bit of ECE is iteratively computed using a weak binary classification function, which is generated through GP evolving by jointly minimizing its empirical risk with the AdaBoost strategy on a training set. We address this as greedy optimization by embedding high-dimensional data points into a similarity-preserved Hamming space with a low dimension. We systematically evaluate ECE on two data sets, SIFT 1M and GIST 1M, showing the effectiveness and the accuracy of our method for a large-scale similarity search.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.