Abstract
BackgroundThe methylation inhibitor 5-Aza-2′-deoxycytidine (decitabine, DAC) has a great therapeutic value for acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). But decitabine monotherapy was associated with a relatively low rate of complete remission in AML and MDS. We aimed to investigate the effect of several anti-leukemia drugs in combination with decitabine on the proliferation of myeloid leukemia cells, to select the most efficient combination group and explore the associated mechanisms of these combination therapies.MethodsCell proliferation was tested by MTT assay and CFU-GM assay. Cell apoptosis was evaluated by Annexin V and PI staining in cell culture, TUNEL assay and transmission electron microscopy in animal study. MicroPET was used to imaging the tumor in mouse model. Molecular studies were conducted using microarray expression analysis, which was used to explore associated pathways, and real-time quantitative reverse transcription-PCR, western blot and immunohistochemistry, used to assess regulation of Wnt/β-catenin pathway. Statistical significance among groups was determined by one-way ANOVA analysis followed by post hoc Bonferroni’s multiple comparison test.ResultsAmong five anti-leukemia agents in combining with decitabine, the sequential combination of decitabine and idarubicin induced synergistic cell death in U937 cells, and this effect was verified in HEL, SKM-1 cells and AML cells isolated from AML patients. Importantly, tumor growth inhibition in this sequential combination was found to be higher than in single agent or controls in vivo. Moreover, sequential combination of the two agents induced apoptosis and depression of the Wnt/β-catenin pathway in both AML cell culture and animal studies.ConclusionsThe findings demonstrated that sequentially combination of decitabine and idarubicin had synergistic anti-leukemia effects. These effects were mainly attributed to demethylation of Wnt/β-catenin pathway inhibitors and downregulation of Wnt/β-catenin pathway nuclear targets.
Highlights
The methylation inhibitor 5-Aza-2′-deoxycytidine has a great therapeutic value for acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS)
We have investigated the effect of five anti-leukemia drugs in combination with DAC, given either simultaneously or sequentially, on proliferation in various AML cell lines
Selection of effective drugs combined with DAC in AML cell line U937 Individual anti-leukemia drugs (IDA, DNR, ACLA, THAL, and HHT) were combined with DAC to investigate the effect of inhibiting proliferation of AML cells
Summary
The methylation inhibitor 5-Aza-2′-deoxycytidine (decitabine, DAC) has a great therapeutic value for acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). Decitabine monotherapy was associated with a relatively low rate of complete remission in AML and MDS. We aimed to investigate the effect of several anti-leukemia drugs in combination with decitabine on the proliferation of myeloid leukemia cells, to select the most efficient combination group and explore the associated mechanisms of these combination therapies
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.