Abstract

This study systematically revealed the feasibility of the sequential ClO2-UV/chlorine process for micropollutant removal and disinfection byproduct (DBP) control. The results demonstrated that the sequential ClO2-UV/chlorine process was effective for the removal of 12 micropollutants. ClO2 pre-treatment reduced the formation of disinfect byproducts (DBPs) in the UV/chlorine process. Compared to the UV/chlorine process, ClO2 pre-treatment (1.0 mg L−1) decreased the formation of the 6 DBPs by 25.1–72.2%; and decreased the formation potential of the 6 DBPs by 13.9–51.8%. Moreover, ClO2 pre-treatment reduced the concentration of total organic chlorine by 19.8%. ClO2 pre-treatment affected the UV/chlorine process in different ways. Firstly, ClO2 pre-treatment generated chlorite, which dominantly served as a scavenger of chlorine radical (Cl) and hydroxyl radical (HO). Secondly, ClO2 pre-treatment decreased the reactivity of natural organic matter (NOM) towards radicals. Finally, ClO2 pre-treatment altered the properties of NOM, in terms of reducing the electron-donating capacity and aromaticity of NOM (SUVA254), and slightly reducing the average molecular weight of NOM. Overall, ClO2 pre-treatment effectively controlled the formation of DBPs in the UV/chlorine process. This study confirmed the sequential ClO2-UV/chlorine process was an alternative strategy to balancing the micropollutant removal and DBP control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.