Abstract

Antigenic peptides derived from viral proteins by multiple proteolytic cleavages are bound by MHC class I molecules and recognized by CTL. Processing predominantly takes place in the cytosol of infected cells by the action of proteasomes. To identify other proteases involved in the endogenous generation of viral epitopes, specifically those derived from proteins routed to the secretory pathway, we investigated presentation of the HIV-1 ENV 10-mer epitope 318RGPGRAFVTI327 (p18) to specific CTL in the presence of diverse protease inhibitors. Both metalloproteinase and proteasome inhibitors decreased CTL recognition of the p18 epitope expressed from either native gp160 or from a chimera based on the hepatitis B virus secretory core protein as carrier protein. Processing of this epitope from both native ENV and the hepatitis B virus secretory core chimeric protein appeared to proceed by a TAP-dependent pathway that involved sequential cleavage by proteasomes and metallo-endopeptidases; however, other protease activities could replace the function of the lactacystin-sensitive proteasomes. By contrast, in a second TAP-independent pathway we detected no contribution of metallopeptidases for processing the ENV epitope from the chimeric protein. These results show that, in the classical TAP-dependent MHC class I pathway, endogenous Ag processing of viral proteins to yield the p18 10-mer epitope requires metallo-endopeptidases in addition to proteasomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.